Exercise 8

Solve the problem in Exercise 4 [TYPO: Use Exercise 7!] with the boundary conditions

$$
\begin{aligned}
u(x, 0) & =f(x), \quad u_{t}(x, 0)=g(x) \quad \text { for } 0 \leq x \leq \ell, \\
u(0, t) & =0=u(\ell, t) \quad \text { for } t>0, \\
u_{x x}(0, t) & =0=u_{x x}(\ell, t) \quad \text { for } t>0 .
\end{aligned}
$$

Solution

There is a typo in this problem; one should refer to Exercise 7 rather than Exercise 4 so that the answer obtained matches the one at the back of the book. The initial boundary value problem that needs to be solved is the following:

```
\(u_{t t}+c^{2} u_{x x x x}=0, \quad 0<x<\ell, t>0\)
\(u(0, t)=0=u(\ell, t), \quad t>0\)
\(u_{x x}(0, t)=0=u_{x x}(\ell, t), \quad t>0\)
\(u(x, 0)=f(x), \quad 0 \leq x \leq \ell\)
\(u_{t}(x, 0)=g(x), \quad 0 \leq x \leq \ell\).
```

The PDE and the boundary conditions are linear and homogeneous, which means that the method of separation of variables can be applied. Assume a product solution of the form, $u(x, t)=X(x) T(t)$, and substitute it into the PDE and boundary conditions to obtain

$$
\begin{gather*}
X(x) T^{\prime \prime}(t)+c^{2} X^{\prime \prime \prime \prime}(x) T(t)=0 \quad \rightarrow \tag{1}\\
\\
u(0, t)=0 \quad \rightarrow \quad X(0) T(t)=0 \quad \rightarrow \quad X(0)=0 \\
u(\ell, t)=0 \quad \rightarrow \quad X(\ell) T(t)=0 \quad \rightarrow \quad X(\ell)=0 \\
u_{x x}(0, t)=0 \quad \rightarrow \quad X^{\prime \prime}(0) T(t)=0 \quad \rightarrow \quad X^{\prime \prime}(0)=0 \\
u_{x x}(\ell, t)=0 \quad \rightarrow \quad X^{\prime \prime}(\ell) T(t)=0 \quad \rightarrow \quad X^{\prime \prime}(\ell)=0
\end{gather*}
$$

The left side of (1) is a function of t, and the right side is a function of x. Therefore, both sides must be equal to a constant. This constant must be positive so that the solution to $T^{\prime \prime}(t)=-k c^{2} T(t)$ remains finite as $t \rightarrow \infty$. The constant is not zero because it would only yield the trivial solution. Let $k=\lambda^{4}$; the reason for choosing λ^{4} instead of λ^{2} is to make the equation for $X(x)$ more convenient to solve.

$$
\frac{d^{4} X}{d x^{4}}-\lambda^{4} X=0, \quad X(0)=0, X(\ell)=0, X^{\prime \prime}(0)=0, X^{\prime \prime}(\ell)=0
$$

This is a linear homogeneous ordinary differential equation with constant coefficients, so the solution has the form, $X(x)=e^{r x}$. Substituting this into the equation gives

$$
\begin{aligned}
& r^{4} e^{r x}-\lambda^{4} e^{r x}=0 \\
& e^{r x}\left(r^{4}-\lambda^{4}\right)=0 \\
& r^{4}-\lambda^{4}=0 \\
& \left(r^{2}+\lambda^{2}\right)\left(r^{2}-\lambda^{2}\right)=0 \\
& (r+i \lambda)(r-i \lambda)(r+\lambda)(r-\lambda)=0 \\
& \rightarrow \quad r=\{ \pm i \lambda, \pm \lambda\}
\end{aligned}
$$

$X(x)$ is simply a linear combination of the $e^{r x}$ terms:

$$
X(x)=D_{1} e^{-i \lambda x}+D_{2} e^{i \lambda x}+D_{3} e^{-\lambda x}+D_{4} e^{\lambda x}
$$

If we set the constants to be $D_{1}=\frac{1}{2}\left(i C_{1}+C_{2}\right), D_{2}=\frac{1}{2}\left(-i C_{1}+C_{2}\right), D_{3}=\frac{1}{2}\left(C_{3}-C_{4}\right)$, and $D_{4}=\frac{1}{2}\left(C_{3}+C_{4}\right)$, then we can rewrite $X(x)$ in terms of trigonometric functions. Recall that

$$
\begin{aligned}
\sin x & =\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \\
\cos x & =\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) .
\end{aligned}
$$

So we have

$$
X(x)=C_{1} \sin \lambda x+C_{2} \cos \lambda x+C_{3} \sinh \lambda x+C_{4} \cosh \lambda x .
$$

Now we apply the boundary conditions to determine the constants.

$$
\begin{aligned}
& X(0)=C_{2}+C_{4}=0 \\
& X^{\prime \prime}(0)=\lambda^{2}\left(-C_{2}+C_{4}\right)=0 \\
& X(\ell)=C_{1} \sin \lambda \ell+C_{3} \sinh \lambda \ell=0 \\
& X^{\prime \prime}(\ell)=\lambda^{2}\left(-C_{1} \sin \lambda \ell+C_{3} \sinh \lambda \ell=0\right.
\end{aligned}
$$

The first two equations imply that $C_{2}=C_{4}=0$. Since $\sinh \lambda \ell$ is greater than zero for all positive λ, set $C_{3}=0 . C_{1}$ may then be arbitrary so long as $\sin \lambda \ell=0$. This is true when $\lambda \ell=n \pi$ or $\lambda_{n}=\frac{n \pi}{\ell}$. These are the eigenvalues, and the corresponding eigenfunctions are $X_{n}(x)=\sin \frac{n \pi x}{\ell}$. Solving the ordinary differential equation for $T(t), T^{\prime \prime}(t)=-c^{2} \lambda^{4} T(t)$, gives $T(t)=A \cos c \lambda^{2} t+B \sin c \lambda^{2} t$. The product solutions are thus $u_{n}(x, t)=X_{n}(x) T_{n}(t)=\sin \lambda_{n} x\left(A_{n} \cos c \lambda_{n}^{2} t+B_{n} \sin c \lambda_{n}^{2} t\right)$ for $n=1,2, \ldots$.

According to the principle of superposition, the solution to the PDE is a linear combination of all product solutions:

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos c\left(\frac{n \pi}{\ell}\right)^{2} t+B_{n} \sin c\left(\frac{n \pi}{\ell}\right)^{2} t\right] \sin \frac{n \pi x}{\ell} .
$$

The constants A_{n} and B_{n} may be determined from the initial conditions of the problem.

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell}=f(x)
$$

Multiplying both sides of the equation by $\sin \frac{m \pi x}{\ell}$ (m being a positive integer) gives

$$
\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell}=f(x) \sin \frac{m \pi x}{\ell}
$$

Integrating both sides with respect to x from 0 to ℓ gives

$$
\begin{gathered}
\int_{0}^{\ell} \sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x \\
\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{\ell} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x \\
A_{n}\left(\frac{\ell}{2}\right)=\int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x \\
A_{n}=\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x .
\end{gathered}
$$

In order to use the second initial condition, we have to take the first derivative of $u(x, t)$ with respect to t.

$$
\begin{gathered}
u_{t}(x, t)=\sum_{n=1}^{\infty}\left[-A_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \sin c\left(\frac{n \pi}{\ell}\right)^{2} t+B_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \cos c\left(\frac{n \pi}{\ell}\right)^{2} t\right] \sin \frac{n \pi x}{\ell} \\
u_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \sin \frac{n \pi x}{\ell}=g(x)
\end{gathered}
$$

Multiplying both sides of the equation by $\sin \frac{m \pi x}{\ell}$ (m being a positive integer) gives

$$
\sum_{n=1}^{\infty} B_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell}=g(x) \sin \frac{m \pi x}{\ell}
$$

Integrating both sides with respect to x from 0 to ℓ gives

$$
\begin{gathered}
\int_{0}^{\ell} \sum_{n=1}^{\infty} B_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} g(x) \sin \frac{m \pi x}{\ell} d x \\
\sum_{n=1}^{\infty} B_{n} c\left(\frac{n \pi}{\ell}\right)^{2} \underbrace{\int_{0}^{\ell} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} g(x) \sin \frac{m \pi x}{\ell} d x \\
B_{n} c\left(\frac{n \pi}{\ell}\right)^{2}\left(\frac{\ell}{2}\right)=\int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x \\
B_{n}=\frac{2 \ell}{c(n \pi)^{2}} \int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x .
\end{gathered}
$$

It is thanks to the orthogonality of the trigonometric functions that most terms in the infinite series vanish upon integration. Only the $n=m$ term remains, and this is denoted by the Kronecker delta function,

$$
\delta_{n m}=\left\{\begin{array}{ll}
0 & n \neq m \\
1 & n=m
\end{array} .\right.
$$

