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Exercise 8

Solve the problem in Exercise 4 [TYPO: Use Exercise 7!] with the boundary conditions

u(x, 0) = f(x), ut(x, 0) = g(x) for 0 ≤ x ≤ `,
u(0, t) = 0 = u(`, t) for t > 0,

uxx(0, t) = 0 = uxx(`, t) for t > 0.

Solution

There is a typo in this problem; one should refer to Exercise 7 rather than Exercise 4 so that the
answer obtained matches the one at the back of the book. The initial boundary value problem
that needs to be solved is the following:

utt + c2uxxxx = 0, 0 < x < `, t > 0
u(0, t) = 0 = u(`, t), t > 0
uxx(0, t) = 0 = uxx(`, t), t > 0
u(x, 0) = f(x), 0 ≤ x ≤ `
ut(x, 0) = g(x), 0 ≤ x ≤ `.

The PDE and the boundary conditions are linear and homogeneous, which means that the
method of separation of variables can be applied. Assume a product solution of the form,
u(x, t) = X(x)T (t), and substitute it into the PDE and boundary conditions to obtain

X(x)T ′′(t) + c2X ′′′′(x)T (t) = 0 → − T ′′(t)

c2T (t)
=
X ′′′′(x)

X(x)
= k (1)

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(`, t) = 0 → X(`)T (t) = 0 → X(`) = 0

uxx(0, t) = 0 → X ′′(0)T (t) = 0 → X ′′(0) = 0

uxx(`, t) = 0 → X ′′(`)T (t) = 0 → X ′′(`) = 0

The left side of (1) is a function of t, and the right side is a function of x. Therefore, both sides
must be equal to a constant. This constant must be positive so that the solution to
T ′′(t) = −kc2T (t) remains finite as t→∞. The constant is not zero because it would only yield
the trivial solution. Let k = λ4; the reason for choosing λ4 instead of λ2 is to make the equation
for X(x) more convenient to solve.

d4X

dx4
− λ4X = 0, X(0) = 0, X(`) = 0, X ′′(0) = 0, X ′′(`) = 0

This is a linear homogeneous ordinary differential equation with constant coefficients, so the
solution has the form, X(x) = erx. Substituting this into the equation gives

r4erx − λ4erx = 0

erx(r4 − λ4) = 0

r4 − λ4 = 0

(r2 + λ2)(r2 − λ2) = 0

(r + iλ)(r − iλ)(r + λ)(r − λ) = 0

→ r = {±iλ,±λ}
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X(x) is simply a linear combination of the erx terms:

X(x) = D1e
−iλx +D2e

iλx +D3e
−λx +D4e

λx.

If we set the constants to be D1 =
1
2(iC1 + C2), D2 =

1
2(−iC1 + C2), D3 =

1
2(C3 − C4), and

D4 =
1
2(C3 + C4), then we can rewrite X(x) in terms of trigonometric functions. Recall that

sinx =
1

2i
(eix − e−ix)

cosx =
1

2
(eix + e−ix)

sinhx =
1

2
(ex − e−x)

coshx =
1

2
(ex + e−x).

So we have
X(x) = C1 sinλx+ C2 cosλx+ C3 sinhλx+ C4 coshλx.

Now we apply the boundary conditions to determine the constants.

X(0) = C2 + C4 = 0

X ′′(0) = λ2(−C2 + C4) = 0

X(`) = C1 sinλ`+ C3 sinhλ` = 0

X ′′(`) = λ2(−C1 sinλ`+ C3 sinhλ` = 0

The first two equations imply that C2 = C4 = 0. Since sinhλ` is greater than zero for all positive
λ, set C3 = 0. C1 may then be arbitrary so long as sinλ` = 0. This is true when λ` = nπ or
λn = nπ

` . These are the eigenvalues, and the corresponding eigenfunctions are Xn(x) = sin nπx
` .

Solving the ordinary differential equation for T (t), T ′′(t) = −c2λ4T (t), gives
T (t) = A cos cλ2t+B sin cλ2t. The product solutions are thus
un(x, t) = Xn(x)Tn(t) = sinλnx(An cos cλ

2
nt+Bn sin cλ

2
nt) for n = 1, 2, . . ..

According to the principle of superposition, the solution to the PDE is a linear combination of all
product solutions:

u(x, t) =
∞∑
n=1

[
An cos c

(nπ
`

)2
t+Bn sin c

(nπ
`

)2
t

]
sin

nπx

`
.

The constants An and Bn may be determined from the initial conditions of the problem.

u(x, 0) =
∞∑
n=1

An sin
nπx

`
= f(x)

Multiplying both sides of the equation by sin mπx
` (m being a positive integer) gives

∞∑
n=1

An sin
nπx

`
sin

mπx

`
= f(x) sin

mπx

`
.
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Integrating both sides with respect to x from 0 to ` gives

ˆ `

0

∞∑
n=1

An sin
nπx

`
sin

mπx

`
dx =

ˆ `

0
f(x) sin

mπx

`
dx

∞∑
n=1

An

ˆ `

0
sin

nπx

`
sin

mπx

`
dx︸ ︷︷ ︸

= `
2
δnm

=

ˆ `

0
f(x) sin

mπx

`
dx

An

(
`

2

)
=

ˆ `

0
f(x) sin

nπx

`
dx

An =
2

`

ˆ `

0
f(x) sin

nπx

`
dx.

In order to use the second initial condition, we have to take the first derivative of u(x, t) with
respect to t.

ut(x, t) =
∞∑
n=1

[
−Anc

(nπ
`

)2
sin c

(nπ
`

)2
t+Bnc

(nπ
`

)2
cos c

(nπ
`

)2
t

]
sin

nπx

`

ut(x, 0) =
∞∑
n=1

Bnc
(nπ
`

)2
sin

nπx

`
= g(x)

Multiplying both sides of the equation by sin mπx
` (m being a positive integer) gives

∞∑
n=1

Bnc
(nπ
`

)2
sin

nπx

`
sin

mπx

`
= g(x) sin

mπx

`
.

Integrating both sides with respect to x from 0 to ` gives

ˆ `

0

∞∑
n=1

Bnc
(nπ
`

)2
sin

nπx

`
sin

mπx

`
dx =

ˆ `

0
g(x) sin

mπx

`
dx

∞∑
n=1

Bnc
(nπ
`

)2 ˆ `

0
sin

nπx

`
sin

mπx

`
dx︸ ︷︷ ︸

= `
2
δnm

=

ˆ `

0
g(x) sin

mπx

`
dx

Bnc
(nπ
`

)2( `
2

)
=

ˆ `

0
g(x) sin

nπx

`
dx

Bn =
2`

c(nπ)2

ˆ `

0
g(x) sin

nπx

`
dx.

It is thanks to the orthogonality of the trigonometric functions that most terms in the infinite
series vanish upon integration. Only the n = m term remains, and this is denoted by the
Kronecker delta function,

δnm =

{
0 n 6= m

1 n = m
.

www.stemjock.com


